↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
S2_IN_GA(plus(A, plus(B, C)), D) → U1_GA(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
S2_IN_GA(plus(A, plus(B, C)), D) → S2_IN_GA(plus(plus(A, B), C), D)
S2_IN_GA(plus(A, B), C) → U2_GA(A, B, C, s2_in_ga(plus(B, A), C))
S2_IN_GA(plus(A, B), C) → S2_IN_GA(plus(B, A), C)
S2_IN_GA(plus(X, Y), Z) → U3_GA(X, Y, Z, s2_in_ga(X, A))
S2_IN_GA(plus(X, Y), Z) → S2_IN_GA(X, A)
S2_IN_GA(plus(A, B), C) → U6_GA(A, B, C, isNat_in_g(A))
S2_IN_GA(plus(A, B), C) → ISNAT_IN_G(A)
ISNAT_IN_G(s(X)) → U9_G(X, isNat_in_g(X))
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
U6_GA(A, B, C, isNat_out_g(A)) → U7_GA(A, B, C, isNat_in_g(B))
U6_GA(A, B, C, isNat_out_g(A)) → ISNAT_IN_G(B)
U7_GA(A, B, C, isNat_out_g(B)) → U8_GA(A, B, C, add_in_gga(A, B, C))
U7_GA(A, B, C, isNat_out_g(B)) → ADD_IN_GGA(A, B, C)
ADD_IN_GGA(s(X), Y, s(Z)) → U10_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → U4_GA(X, Y, Z, A, s2_in_ga(Y, B))
U3_GA(X, Y, Z, s2_out_ga(X, A)) → S2_IN_GA(Y, B)
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → U5_GA(X, Y, Z, s2_in_ga(plus(A, B), Z))
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B), Z)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
S2_IN_GA(plus(A, plus(B, C)), D) → U1_GA(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
S2_IN_GA(plus(A, plus(B, C)), D) → S2_IN_GA(plus(plus(A, B), C), D)
S2_IN_GA(plus(A, B), C) → U2_GA(A, B, C, s2_in_ga(plus(B, A), C))
S2_IN_GA(plus(A, B), C) → S2_IN_GA(plus(B, A), C)
S2_IN_GA(plus(X, Y), Z) → U3_GA(X, Y, Z, s2_in_ga(X, A))
S2_IN_GA(plus(X, Y), Z) → S2_IN_GA(X, A)
S2_IN_GA(plus(A, B), C) → U6_GA(A, B, C, isNat_in_g(A))
S2_IN_GA(plus(A, B), C) → ISNAT_IN_G(A)
ISNAT_IN_G(s(X)) → U9_G(X, isNat_in_g(X))
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
U6_GA(A, B, C, isNat_out_g(A)) → U7_GA(A, B, C, isNat_in_g(B))
U6_GA(A, B, C, isNat_out_g(A)) → ISNAT_IN_G(B)
U7_GA(A, B, C, isNat_out_g(B)) → U8_GA(A, B, C, add_in_gga(A, B, C))
U7_GA(A, B, C, isNat_out_g(B)) → ADD_IN_GGA(A, B, C)
ADD_IN_GGA(s(X), Y, s(Z)) → U10_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → U4_GA(X, Y, Z, A, s2_in_ga(Y, B))
U3_GA(X, Y, Z, s2_out_ga(X, A)) → S2_IN_GA(Y, B)
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → U5_GA(X, Y, Z, s2_in_ga(plus(A, B), Z))
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B), Z)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PrologToPiTRSProof
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
S2_IN_GA(plus(A, plus(B, C)), D) → S2_IN_GA(plus(plus(A, B), C), D)
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B), Z)
S2_IN_GA(plus(A, B), C) → S2_IN_GA(plus(B, A), C)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → S2_IN_GA(Y, B)
S2_IN_GA(plus(X, Y), Z) → S2_IN_GA(X, A)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → U4_GA(X, Y, Z, A, s2_in_ga(Y, B))
S2_IN_GA(plus(X, Y), Z) → U3_GA(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ PrologToPiTRSProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(X, Y)) → U3_GA(Y, s2_in_ga(X))
U3_GA(Y, s2_out_ga(A)) → U4_GA(A, s2_in_ga(Y))
S2_IN_GA(plus(X, Y)) → S2_IN_GA(X)
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
U4_GA(A, s2_out_ga(B)) → S2_IN_GA(plus(A, B))
U3_GA(Y, s2_out_ga(A)) → S2_IN_GA(Y)
s2_in_ga(plus(A, plus(B, C))) → U1_ga(s2_in_ga(plus(plus(A, B), C)))
s2_in_ga(plus(A, B)) → U2_ga(s2_in_ga(plus(B, A)))
s2_in_ga(plus(X, 0)) → s2_out_ga(X)
s2_in_ga(plus(X, Y)) → U3_ga(Y, s2_in_ga(X))
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(isNat_in_g(X))
isNat_in_g(0) → isNat_out_g
U9_g(isNat_out_g) → isNat_out_g
U6_ga(A, B, isNat_out_g) → U7_ga(A, B, isNat_in_g(B))
U7_ga(A, B, isNat_out_g) → U8_ga(add_in_gga(A, B))
add_in_gga(s(X), Y) → U10_gga(add_in_gga(X, Y))
add_in_gga(0, X) → add_out_gga(X)
U10_gga(add_out_gga(Z)) → add_out_gga(s(Z))
U8_ga(add_out_gga(C)) → s2_out_ga(C)
U3_ga(Y, s2_out_ga(A)) → U4_ga(A, s2_in_ga(Y))
U4_ga(A, s2_out_ga(B)) → U5_ga(s2_in_ga(plus(A, B)))
U5_ga(s2_out_ga(Z)) → s2_out_ga(Z)
U2_ga(s2_out_ga(C)) → s2_out_ga(C)
U1_ga(s2_out_ga(D)) → s2_out_ga(D)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0)
U8_ga(x0)
U3_ga(x0, x1)
U4_ga(x0, x1)
U5_ga(x0)
U2_ga(x0)
U1_ga(x0)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
S2_IN_GA(plus(X, Y)) → U3_GA(Y, s2_in_ga(X))
S2_IN_GA(plus(X, Y)) → S2_IN_GA(X)
Used ordering: Polynomial interpretation [25]:
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
U3_GA(Y, s2_out_ga(A)) → U4_GA(A, s2_in_ga(Y))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
U4_GA(A, s2_out_ga(B)) → S2_IN_GA(plus(A, B))
U3_GA(Y, s2_out_ga(A)) → S2_IN_GA(Y)
POL(0) = 1
POL(S2_IN_GA(x1)) = 1 + x1
POL(U10_gga(x1)) = 1 + x1
POL(U1_ga(x1)) = x1
POL(U2_ga(x1)) = x1
POL(U3_GA(x1, x2)) = x1 + x2
POL(U3_ga(x1, x2)) = 1 + x1 + x2
POL(U4_GA(x1, x2)) = 1 + x1 + x2
POL(U4_ga(x1, x2)) = 1 + x1 + x2
POL(U5_ga(x1)) = x1
POL(U6_ga(x1, x2, x3)) = x1 + x2
POL(U7_ga(x1, x2, x3)) = x1 + x2
POL(U8_ga(x1)) = x1
POL(U9_g(x1)) = 0
POL(add_in_gga(x1, x2)) = x1 + x2
POL(add_out_gga(x1)) = 1 + x1
POL(isNat_in_g(x1)) = x1
POL(isNat_out_g) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = 1 + x1
POL(s2_in_ga(x1)) = x1
POL(s2_out_ga(x1)) = 1 + x1
add_in_gga(s(X), Y) → U10_gga(add_in_gga(X, Y))
s2_in_ga(plus(A, plus(B, C))) → U1_ga(s2_in_ga(plus(plus(A, B), C)))
U2_ga(s2_out_ga(C)) → s2_out_ga(C)
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
U7_ga(A, B, isNat_out_g) → U8_ga(add_in_gga(A, B))
U3_ga(Y, s2_out_ga(A)) → U4_ga(A, s2_in_ga(Y))
U8_ga(add_out_gga(C)) → s2_out_ga(C)
U1_ga(s2_out_ga(D)) → s2_out_ga(D)
s2_in_ga(plus(A, B)) → U2_ga(s2_in_ga(plus(B, A)))
U6_ga(A, B, isNat_out_g) → U7_ga(A, B, isNat_in_g(B))
U4_ga(A, s2_out_ga(B)) → U5_ga(s2_in_ga(plus(A, B)))
s2_in_ga(plus(X, 0)) → s2_out_ga(X)
U10_gga(add_out_gga(Z)) → add_out_gga(s(Z))
U5_ga(s2_out_ga(Z)) → s2_out_ga(Z)
s2_in_ga(plus(X, Y)) → U3_ga(Y, s2_in_ga(X))
add_in_gga(0, X) → add_out_gga(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
U3_GA(Y, s2_out_ga(A)) → U4_GA(A, s2_in_ga(Y))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
U4_GA(A, s2_out_ga(B)) → S2_IN_GA(plus(A, B))
U3_GA(Y, s2_out_ga(A)) → S2_IN_GA(Y)
s2_in_ga(plus(A, plus(B, C))) → U1_ga(s2_in_ga(plus(plus(A, B), C)))
s2_in_ga(plus(A, B)) → U2_ga(s2_in_ga(plus(B, A)))
s2_in_ga(plus(X, 0)) → s2_out_ga(X)
s2_in_ga(plus(X, Y)) → U3_ga(Y, s2_in_ga(X))
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(isNat_in_g(X))
isNat_in_g(0) → isNat_out_g
U9_g(isNat_out_g) → isNat_out_g
U6_ga(A, B, isNat_out_g) → U7_ga(A, B, isNat_in_g(B))
U7_ga(A, B, isNat_out_g) → U8_ga(add_in_gga(A, B))
add_in_gga(s(X), Y) → U10_gga(add_in_gga(X, Y))
add_in_gga(0, X) → add_out_gga(X)
U10_gga(add_out_gga(Z)) → add_out_gga(s(Z))
U8_ga(add_out_gga(C)) → s2_out_ga(C)
U3_ga(Y, s2_out_ga(A)) → U4_ga(A, s2_in_ga(Y))
U4_ga(A, s2_out_ga(B)) → U5_ga(s2_in_ga(plus(A, B)))
U5_ga(s2_out_ga(Z)) → s2_out_ga(Z)
U2_ga(s2_out_ga(C)) → s2_out_ga(C)
U1_ga(s2_out_ga(D)) → s2_out_ga(D)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0)
U8_ga(x0)
U3_ga(x0, x1)
U4_ga(x0, x1)
U5_ga(x0)
U2_ga(x0)
U1_ga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
s2_in_ga(plus(A, plus(B, C))) → U1_ga(s2_in_ga(plus(plus(A, B), C)))
s2_in_ga(plus(A, B)) → U2_ga(s2_in_ga(plus(B, A)))
s2_in_ga(plus(X, 0)) → s2_out_ga(X)
s2_in_ga(plus(X, Y)) → U3_ga(Y, s2_in_ga(X))
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(isNat_in_g(X))
isNat_in_g(0) → isNat_out_g
U9_g(isNat_out_g) → isNat_out_g
U6_ga(A, B, isNat_out_g) → U7_ga(A, B, isNat_in_g(B))
U7_ga(A, B, isNat_out_g) → U8_ga(add_in_gga(A, B))
add_in_gga(s(X), Y) → U10_gga(add_in_gga(X, Y))
add_in_gga(0, X) → add_out_gga(X)
U10_gga(add_out_gga(Z)) → add_out_gga(s(Z))
U8_ga(add_out_gga(C)) → s2_out_ga(C)
U3_ga(Y, s2_out_ga(A)) → U4_ga(A, s2_in_ga(Y))
U4_ga(A, s2_out_ga(B)) → U5_ga(s2_in_ga(plus(A, B)))
U5_ga(s2_out_ga(Z)) → s2_out_ga(Z)
U2_ga(s2_out_ga(C)) → s2_out_ga(C)
U1_ga(s2_out_ga(D)) → s2_out_ga(D)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0)
U8_ga(x0)
U3_ga(x0, x1)
U4_ga(x0, x1)
U5_ga(x0)
U2_ga(x0)
U1_ga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PrologToPiTRSProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0)
U8_ga(x0)
U3_ga(x0, x1)
U4_ga(x0, x1)
U5_ga(x0)
U2_ga(x0)
U1_ga(x0)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0)
U8_ga(x0)
U3_ga(x0, x1)
U4_ga(x0, x1)
U5_ga(x0)
U2_ga(x0)
U1_ga(x0)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
↳ PrologToPiTRSProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
S2_IN_GA(plus(A, plus(B, C)), D) → U1_GA(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
S2_IN_GA(plus(A, plus(B, C)), D) → S2_IN_GA(plus(plus(A, B), C), D)
S2_IN_GA(plus(A, B), C) → U2_GA(A, B, C, s2_in_ga(plus(B, A), C))
S2_IN_GA(plus(A, B), C) → S2_IN_GA(plus(B, A), C)
S2_IN_GA(plus(X, Y), Z) → U3_GA(X, Y, Z, s2_in_ga(X, A))
S2_IN_GA(plus(X, Y), Z) → S2_IN_GA(X, A)
S2_IN_GA(plus(A, B), C) → U6_GA(A, B, C, isNat_in_g(A))
S2_IN_GA(plus(A, B), C) → ISNAT_IN_G(A)
ISNAT_IN_G(s(X)) → U9_G(X, isNat_in_g(X))
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
U6_GA(A, B, C, isNat_out_g(A)) → U7_GA(A, B, C, isNat_in_g(B))
U6_GA(A, B, C, isNat_out_g(A)) → ISNAT_IN_G(B)
U7_GA(A, B, C, isNat_out_g(B)) → U8_GA(A, B, C, add_in_gga(A, B, C))
U7_GA(A, B, C, isNat_out_g(B)) → ADD_IN_GGA(A, B, C)
ADD_IN_GGA(s(X), Y, s(Z)) → U10_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → U4_GA(X, Y, Z, A, s2_in_ga(Y, B))
U3_GA(X, Y, Z, s2_out_ga(X, A)) → S2_IN_GA(Y, B)
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → U5_GA(X, Y, Z, s2_in_ga(plus(A, B), Z))
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B), Z)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
S2_IN_GA(plus(A, plus(B, C)), D) → U1_GA(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
S2_IN_GA(plus(A, plus(B, C)), D) → S2_IN_GA(plus(plus(A, B), C), D)
S2_IN_GA(plus(A, B), C) → U2_GA(A, B, C, s2_in_ga(plus(B, A), C))
S2_IN_GA(plus(A, B), C) → S2_IN_GA(plus(B, A), C)
S2_IN_GA(plus(X, Y), Z) → U3_GA(X, Y, Z, s2_in_ga(X, A))
S2_IN_GA(plus(X, Y), Z) → S2_IN_GA(X, A)
S2_IN_GA(plus(A, B), C) → U6_GA(A, B, C, isNat_in_g(A))
S2_IN_GA(plus(A, B), C) → ISNAT_IN_G(A)
ISNAT_IN_G(s(X)) → U9_G(X, isNat_in_g(X))
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
U6_GA(A, B, C, isNat_out_g(A)) → U7_GA(A, B, C, isNat_in_g(B))
U6_GA(A, B, C, isNat_out_g(A)) → ISNAT_IN_G(B)
U7_GA(A, B, C, isNat_out_g(B)) → U8_GA(A, B, C, add_in_gga(A, B, C))
U7_GA(A, B, C, isNat_out_g(B)) → ADD_IN_GGA(A, B, C)
ADD_IN_GGA(s(X), Y, s(Z)) → U10_GGA(X, Y, Z, add_in_gga(X, Y, Z))
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → U4_GA(X, Y, Z, A, s2_in_ga(Y, B))
U3_GA(X, Y, Z, s2_out_ga(X, A)) → S2_IN_GA(Y, B)
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → U5_GA(X, Y, Z, s2_in_ga(plus(A, B), Z))
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B), Z)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
ADD_IN_GGA(s(X), Y, s(Z)) → ADD_IN_GGA(X, Y, Z)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
↳ PiDP
ADD_IN_GGA(s(X), Y) → ADD_IN_GGA(X, Y)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PiDP
ISNAT_IN_G(s(X)) → ISNAT_IN_G(X)
From the DPs we obtained the following set of size-change graphs:
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
S2_IN_GA(plus(A, plus(B, C)), D) → S2_IN_GA(plus(plus(A, B), C), D)
U4_GA(X, Y, Z, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B), Z)
S2_IN_GA(plus(A, B), C) → S2_IN_GA(plus(B, A), C)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → S2_IN_GA(Y, B)
S2_IN_GA(plus(X, Y), Z) → S2_IN_GA(X, A)
U3_GA(X, Y, Z, s2_out_ga(X, A)) → U4_GA(X, Y, Z, A, s2_in_ga(Y, B))
S2_IN_GA(plus(X, Y), Z) → U3_GA(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, plus(B, C)), D) → U1_ga(A, B, C, D, s2_in_ga(plus(plus(A, B), C), D))
s2_in_ga(plus(A, B), C) → U2_ga(A, B, C, s2_in_ga(plus(B, A), C))
s2_in_ga(plus(X, 0), X) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y), Z) → U3_ga(X, Y, Z, s2_in_ga(X, A))
s2_in_ga(plus(A, B), C) → U6_ga(A, B, C, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, C, isNat_out_g(A)) → U7_ga(A, B, C, isNat_in_g(B))
U7_ga(A, B, C, isNat_out_g(B)) → U8_ga(A, B, C, add_in_gga(A, B, C))
add_in_gga(s(X), Y, s(Z)) → U10_gga(X, Y, Z, add_in_gga(X, Y, Z))
add_in_gga(0, X, X) → add_out_gga(0, X, X)
U10_gga(X, Y, Z, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, C, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, Z, s2_out_ga(X, A)) → U4_ga(X, Y, Z, A, s2_in_ga(Y, B))
U4_ga(X, Y, Z, A, s2_out_ga(Y, B)) → U5_ga(X, Y, Z, s2_in_ga(plus(A, B), Z))
U5_ga(X, Y, Z, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, C, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, D, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
U3_GA(X, Y, s2_out_ga(X, A)) → U4_GA(X, Y, A, s2_in_ga(Y))
S2_IN_GA(plus(X, Y)) → S2_IN_GA(X)
U3_GA(X, Y, s2_out_ga(X, A)) → S2_IN_GA(Y)
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
S2_IN_GA(plus(X, Y)) → U3_GA(X, Y, s2_in_ga(X))
U4_GA(X, Y, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B))
s2_in_ga(plus(A, plus(B, C))) → U1_ga(A, B, C, s2_in_ga(plus(plus(A, B), C)))
s2_in_ga(plus(A, B)) → U2_ga(A, B, s2_in_ga(plus(B, A)))
s2_in_ga(plus(X, 0)) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y)) → U3_ga(X, Y, s2_in_ga(X))
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, isNat_out_g(A)) → U7_ga(A, B, isNat_in_g(B))
U7_ga(A, B, isNat_out_g(B)) → U8_ga(A, B, add_in_gga(A, B))
add_in_gga(s(X), Y) → U10_gga(X, Y, add_in_gga(X, Y))
add_in_gga(0, X) → add_out_gga(0, X, X)
U10_gga(X, Y, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, s2_out_ga(X, A)) → U4_ga(X, Y, A, s2_in_ga(Y))
U4_ga(X, Y, A, s2_out_ga(Y, B)) → U5_ga(X, Y, s2_in_ga(plus(A, B)))
U5_ga(X, Y, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0, x1)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0, x1, x2)
U8_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U4_ga(x0, x1, x2, x3)
U5_ga(x0, x1, x2)
U2_ga(x0, x1, x2)
U1_ga(x0, x1, x2, x3)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U3_GA(X, Y, s2_out_ga(X, A)) → U4_GA(X, Y, A, s2_in_ga(Y))
S2_IN_GA(plus(X, Y)) → S2_IN_GA(X)
U3_GA(X, Y, s2_out_ga(X, A)) → S2_IN_GA(Y)
S2_IN_GA(plus(X, Y)) → U3_GA(X, Y, s2_in_ga(X))
Used ordering: Polynomial interpretation [25]:
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
U4_GA(X, Y, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B))
POL(0) = 0
POL(S2_IN_GA(x1)) = 1 + x1
POL(U10_gga(x1, x2, x3)) = x2
POL(U1_ga(x1, x2, x3, x4)) = x4
POL(U2_ga(x1, x2, x3)) = x3
POL(U3_GA(x1, x2, x3)) = 1 + x2 + x3
POL(U3_ga(x1, x2, x3)) = x2 + x3
POL(U4_GA(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U4_ga(x1, x2, x3, x4)) = 1 + x3 + x4
POL(U5_ga(x1, x2, x3)) = x3
POL(U6_ga(x1, x2, x3)) = 1 + x1 + x2
POL(U7_ga(x1, x2, x3)) = 1 + x2
POL(U8_ga(x1, x2, x3)) = 1 + x3
POL(U9_g(x1, x2)) = 0
POL(add_in_gga(x1, x2)) = x2
POL(add_out_gga(x1, x2, x3)) = x3
POL(isNat_in_g(x1)) = 0
POL(isNat_out_g(x1)) = 0
POL(plus(x1, x2)) = 1 + x1 + x2
POL(s(x1)) = 0
POL(s2_in_ga(x1)) = x1
POL(s2_out_ga(x1, x2)) = 1 + x2
U8_ga(A, B, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
U2_ga(A, B, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
s2_in_ga(plus(X, Y)) → U3_ga(X, Y, s2_in_ga(X))
U6_ga(A, B, isNat_out_g(A)) → U7_ga(A, B, isNat_in_g(B))
s2_in_ga(plus(A, plus(B, C))) → U1_ga(A, B, C, s2_in_ga(plus(plus(A, B), C)))
U10_gga(X, Y, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U5_ga(X, Y, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
U7_ga(A, B, isNat_out_g(B)) → U8_ga(A, B, add_in_gga(A, B))
add_in_gga(0, X) → add_out_gga(0, X, X)
s2_in_ga(plus(A, B)) → U2_ga(A, B, s2_in_ga(plus(B, A)))
U4_ga(X, Y, A, s2_out_ga(Y, B)) → U5_ga(X, Y, s2_in_ga(plus(A, B)))
add_in_gga(s(X), Y) → U10_gga(X, Y, add_in_gga(X, Y))
s2_in_ga(plus(X, 0)) → s2_out_ga(plus(X, 0), X)
U3_ga(X, Y, s2_out_ga(X, A)) → U4_ga(X, Y, A, s2_in_ga(Y))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
U4_GA(X, Y, A, s2_out_ga(Y, B)) → S2_IN_GA(plus(A, B))
s2_in_ga(plus(A, plus(B, C))) → U1_ga(A, B, C, s2_in_ga(plus(plus(A, B), C)))
s2_in_ga(plus(A, B)) → U2_ga(A, B, s2_in_ga(plus(B, A)))
s2_in_ga(plus(X, 0)) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y)) → U3_ga(X, Y, s2_in_ga(X))
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, isNat_out_g(A)) → U7_ga(A, B, isNat_in_g(B))
U7_ga(A, B, isNat_out_g(B)) → U8_ga(A, B, add_in_gga(A, B))
add_in_gga(s(X), Y) → U10_gga(X, Y, add_in_gga(X, Y))
add_in_gga(0, X) → add_out_gga(0, X, X)
U10_gga(X, Y, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, s2_out_ga(X, A)) → U4_ga(X, Y, A, s2_in_ga(Y))
U4_ga(X, Y, A, s2_out_ga(Y, B)) → U5_ga(X, Y, s2_in_ga(plus(A, B)))
U5_ga(X, Y, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0, x1)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0, x1, x2)
U8_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U4_ga(x0, x1, x2, x3)
U5_ga(x0, x1, x2)
U2_ga(x0, x1, x2)
U1_ga(x0, x1, x2, x3)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
s2_in_ga(plus(A, plus(B, C))) → U1_ga(A, B, C, s2_in_ga(plus(plus(A, B), C)))
s2_in_ga(plus(A, B)) → U2_ga(A, B, s2_in_ga(plus(B, A)))
s2_in_ga(plus(X, 0)) → s2_out_ga(plus(X, 0), X)
s2_in_ga(plus(X, Y)) → U3_ga(X, Y, s2_in_ga(X))
s2_in_ga(plus(A, B)) → U6_ga(A, B, isNat_in_g(A))
isNat_in_g(s(X)) → U9_g(X, isNat_in_g(X))
isNat_in_g(0) → isNat_out_g(0)
U9_g(X, isNat_out_g(X)) → isNat_out_g(s(X))
U6_ga(A, B, isNat_out_g(A)) → U7_ga(A, B, isNat_in_g(B))
U7_ga(A, B, isNat_out_g(B)) → U8_ga(A, B, add_in_gga(A, B))
add_in_gga(s(X), Y) → U10_gga(X, Y, add_in_gga(X, Y))
add_in_gga(0, X) → add_out_gga(0, X, X)
U10_gga(X, Y, add_out_gga(X, Y, Z)) → add_out_gga(s(X), Y, s(Z))
U8_ga(A, B, add_out_gga(A, B, C)) → s2_out_ga(plus(A, B), C)
U3_ga(X, Y, s2_out_ga(X, A)) → U4_ga(X, Y, A, s2_in_ga(Y))
U4_ga(X, Y, A, s2_out_ga(Y, B)) → U5_ga(X, Y, s2_in_ga(plus(A, B)))
U5_ga(X, Y, s2_out_ga(plus(A, B), Z)) → s2_out_ga(plus(X, Y), Z)
U2_ga(A, B, s2_out_ga(plus(B, A), C)) → s2_out_ga(plus(A, B), C)
U1_ga(A, B, C, s2_out_ga(plus(plus(A, B), C), D)) → s2_out_ga(plus(A, plus(B, C)), D)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0, x1)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0, x1, x2)
U8_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U4_ga(x0, x1, x2, x3)
U5_ga(x0, x1, x2)
U2_ga(x0, x1, x2)
U1_ga(x0, x1, x2, x3)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0, x1)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0, x1, x2)
U8_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U4_ga(x0, x1, x2, x3)
U5_ga(x0, x1, x2)
U2_ga(x0, x1, x2)
U1_ga(x0, x1, x2, x3)
s2_in_ga(x0)
isNat_in_g(x0)
U9_g(x0, x1)
U6_ga(x0, x1, x2)
U7_ga(x0, x1, x2)
add_in_gga(x0, x1)
U10_gga(x0, x1, x2)
U8_ga(x0, x1, x2)
U3_ga(x0, x1, x2)
U4_ga(x0, x1, x2, x3)
U5_ga(x0, x1, x2)
U2_ga(x0, x1, x2)
U1_ga(x0, x1, x2, x3)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))
S2_IN_GA(plus(A, B)) → S2_IN_GA(plus(B, A))
S2_IN_GA(plus(A, plus(B, C))) → S2_IN_GA(plus(plus(A, B), C))